given that:

$$x(0) = 1, x(\pi/2) = -1$$

Unit IV

7. (a) Find the Fourier transform of:

$$f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$

Hence evaluate:

$$\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$$

(b) Using Parseval's identity, prove that :

$$\int_0^\infty \frac{dt}{(a^2 + t^2)(b^2 + t^2)} = \frac{\pi}{2ab(a+b)}$$

- **8.** (a) Find the z-transform of n^2e^{nq} .
 - (b) Use convolution theorem to evaluate:

$$z^{-1} \left\{ \frac{z^2}{(z-a)(z-b)} \right\}$$

No. of Printed Pages: 04 Roll No.

18C4

B. Tech. EXAMINATION, 2022

(Third Semester)

(C Scheme) (Main & Re-appear)
(CSE)

MATH207C

MATHEMATICS-III (PDE&T)

Time: 3 Hours] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

1. (a) Solve:

$$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$$

(b) Solve:

$$2z + p^2 + qy + 2y^2 = 0$$

2. (a) Solve:

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6\frac{\partial^2 z}{\partial y^2} = y \cos x$$

(b) Solve:

$$(D^{2} + 2DD' + D'^{2} - 2D - 2D')z = \sin(x + 2y)$$

Unit II

3. (a) Solve by the method of separation of variables :

$$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$$

given that $u(0, y) = 8e^{-3y}$.

M-18C4

- (b) Using D'Alembert's method, find the deflection of a vibrating string of unit length having fixed ends, with initial velocity zero and initial deflection $f(x) = a(x-x^2)$.
- **4.** Obtain the solution of one-dimensional diffusion equation by the method of separation of variables.

Unit III

- **5.** (a) Find Laplace transform of cosh at sin at.
 - (b) Evaluate:

$$\int_0^\infty \frac{e^{-at} - e^{-bt}}{t} dt$$

6. (a) Find the inverse Laplace transform of:

$$\frac{5s+3}{\left(s-1\right)\left(s^2+2s+5\right)}$$

(b) Solve:

$$\frac{d^2x}{dt^2} + 9x = \cos 2t$$

(2-N22-12/12)**M-18C4**

3

P.T.O.